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Review of mathematical statistics 

STATISTICAL INFERENCESTATISTICAL INFERENCESTATISTICAL INFERENCESTATISTICAL INFERENCE    

    

Main point: Main point: Main point: Main point: Remember that our main concern is Remember that our main concern is Remember that our main concern is Remember that our main concern is to use the sample to conclude about to use the sample to conclude about to use the sample to conclude about to use the sample to conclude about 

unknown aspects of the populationunknown aspects of the populationunknown aspects of the populationunknown aspects of the population    

    

    



 

2 

 

• Population – Model specification 

 Parametric and non-parametric models – What is our previous knowledge about 

the population? 

 How to define a model?  

• Sampling process – How to collect the sample? 

o Random sample: Independent and identically distributed observations 

o Other sampling processes: stratified sampling, cluster sampling or non-random 

processes like convenience sampling or snowball (you ask the participants to provide 

you with names of those that will be able to provide you with important information) 

…. 

o Understanding variability 
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• Statistical inference – The role of uncertainty 

o Parametric and non-parametric inference: Population )|(~ θxfX  

If the density (probability) function (.)f  is known (and θ  is unknown) we face a  

parametric inference problem.  

If (.)f  (and possibly θ ) is unknown we face a non-parametric problem. 

•  Random sample ),,,( 21 nXXX �  

o Sample space 

o Sample distribution (this is a central concept in “classical” statistics) 

o Example: ~ ( )X Ber θ  sample size 3n =  
3
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• Statistic 

o Definition: Real valued or vector-valued function of the random sample. The domain 

of the function is the sample space 

o Sampling distribution of a statistic  

o Example:  Return to previous example and obtain the sampling distribution of 

1 2T X X= +  

• How to get the sampling distribution of a statistic? 

o General approach: ( )( )tXXXTtF n ≤= ,,,Pr)( 21 �
X

   

o Theoretical results – most of them proved using the moment generating function of 

X  (the characteristic function)  

o Approximate procedures 

 Central limit theorem 

 Monte-Carlo simulation (to be developed latter) 

 



 

5 

 

o Examples – Sampling distribution of a statistic 

 Sample average from a normal population with known mean and variance; 

 Sampling distribution of  =
=

n

i iXT
1

 when we are sampling from a Bernoulli 

population.  

• Sample moments  

o k -th sample moment about 0:   =
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• Sample moments versus population moments 



 

6 

 

• Some results (we assume that the corresponding population moments exist) 

o Sample mean 
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o Central limit theorem  
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o Sample variance  
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Order statistics 

• Definition: The order statistics of a random sample ),,,( 21 nXXX �  are the sample values 

placed in ascending order. They are denoted by )()2()1( nXXX ≤≤≤ �  or by 

nnnn XXX ::2:1 ≤≤≤ �  or nYYY ≤≤≤ �21  

• Comments: 

o  Unlike the random sample itself, the order statistics are not independent. If yY j >  

then yYs >  for s j> . 

o  The sample minimum and the sample maximum are examples of order statistics. 

o  Remember that the sample median is defined to be the middle order statistic if n  is 

odd ( 2/)1( +nY ) or the average of the middle two order statistics if n  is even 

( 2/12/ 5.05.0 nn YY +×+× ). 
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• Marginal cumulative distribution of the r-th order statistic: Let ),,,( 21 nXXX �  denote a 

random sample of size n  from a population with cumulative distribution function )(xFX . 

The marginal cumulative distribution will be ( )( ) ( ) =

−
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• If X  is a continuous random variable the density function of the r-th order statistic will 

be 

( )( ) ( ) )()(1
)!(!1)!1(

!
)(

1
yfyFyF

rnr

n
yf X

rn

X

r

XYr

−−
−

−−
=  

Proof: see Casella and Berger, 2nd edition, p 229. 

• Examples: Let us consider a continuous random variable following an exponential 

distribution with mean θ  and a sample of size 5. 

1. The density function of the sample median will be 

( ) ( ) ( ) 01301
!2!1!2

!5
)( /32/1/12/2/

3
>−=−= −−−−−−−

yeeeeeyf
yyyyy

Y
θθθθθ θθ  

2. Compute the density and the distribution function of the sample maximum. 

3. Identify the distribution of the sample minimum. 
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• Let X  be a continuous random variable with distribution function )(xF  and density )(xf . 

)(xF  is strictly monotone for 1)(0 << xF , and let m  be the population median (m  is the 

unique solution of 2/1)( =mF ). Let M  be the sample median. Then, it can be proved that  

M  is asymptotically distributed as a normal variable with mean m  and variance 

12 ))(4( −
mfn , i.e. ( ) )1;0(~)(2)( nnmfmM

�

−  

• Example:  What is the asymptotic distribution of the median of a sample from a normal 

population? 

As we know, for the normal distribution, the population mean is equal to the population 

median, m µ= . However, sample mean and sample median are different (but expected 

not to be very different). We get 
( )

2
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 and we know 
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/

X
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µ

σ

−
. Similar distribution, same mean but the variability of M  is greater 

than the variability of X . 

  



 

11 

 

POINT ESTIMATION 

• We are in the core of parametric inference i.e. we have a model and we want to estimate 

the unknown parameter(s), i.e. )|(~ θxfX , Θ∈θ  where (.)f  is a known density 

(probability) function and θ  is an unknown parameter. 

• In real world we could also consider that our knowledge of (.)f  is questionable but, at this 

stage, we will not proceed in such direction. 

• They are 2 main problems in point estimation: 

o How to find estimators?    To be discussed later. 

o How to evaluate the “quality” of an estimator? 

At this point we only look for an answer to the second question. 
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How to evaluate the “quality” of an estimator? 

• The important thing to notice is that we will evaluate the procedure that generates the 

estimate and not the estimate itself.  

We must distinguish between estimator and estimate. 

• Keep in mind that a good procedure can lead to a poor estimate and conversely a poor 

procedure can originate a good estimate. However good procedures are more likely to 

produce good estimates than poor procedures. 

• This evaluation is performed considering the set of results that could have been generated 

by the procedure and not a particular one. 

• Example: If we want to estimate the mean, θ , of a normal population with known variance 

2σ , the intuitive procedure is to use the sample average, i.e.   =
=

n

i iXnX
1

)/1(  as the 

estimator or  =
=

n

i ixnx
1

)/1(  as an estimate. The quality of the procedure (the estimator) is 

evaluated using the sampling distribution of X  (and not the value given by x ).  
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Unbiasedness 

• Definition 10.1 (12.1): An estimator θ̂  is unbiased if ( ) θθθ =|ˆE , Θ∈∀θ . The bias is 

( ) θθθ
θ

−= |ˆ
ˆ Ebias . 

• Comments: 

 The point is to verify the equality Θ∈∀θ  (see example 2) 

 The bias depends on the estimator being used but also on the particular value of θ . 

 An estimator with a positive bias tends to overestimate the parameter.  

• Example 1: Prove that the sample mean is an unbiased estimator for the population mean, µ   

(assume that the population mean exists). 
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• Example 2: Consider a Bernoulli population with mean θ  and 3.02 =T  as an estimator for θ . As 

it is obvious 2T  is a bad estimator since it does not take into account the sample values. For 

3.0=θ , θ=)( 2TE  but 2T  is a biased estimator since the equality θ=)( 2TE  is not true Θ∈∀θ .  
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• Example 10.4 (12.4): A population has an exponential distribution with mean θ . We want to 

estimate the population mean using a sample of size 3. Determine the bias of the sample 

mean and the sample median as estimators of the population mean. 

Sample mean:  ( | )E X θ θ=   No bias 

Sample median:  Let T  be the sample median.  ( )| 5 / 6E T θ θ=     / 6bias θ= −  

How to compute the bias? 

What is the meaning of the bias? 

Sol: 

Computation: (next slide) 

Meaning: 

On average, the estimator (sample median) underestimates the population mean θ  

which is not a surprise. Remember that the median of the population is ln 2θ θ<   – the 

sample median is also a biased estimator for the population median (ln2 < 5/6), but now 

the bias is positive ( ( )(5 / 6) ln 2 θ= − □ 
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• Definition 10.2 (12.2): An estimator θ̂  is asymptotically unbiased if 

( ) θθθ =
∞→

|ˆlim E
n

, Θ∈∀θ .  

• Example 10.5 (12.5) ( )θ;0~ UX , sample ),,,( 21 nXXX �  and iXmaxˆ =θ .  
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• How to compare 2 unbiased estimators?  

o Let T  and T ′  be 2 unbiased estimators for the parameter θ . We will say that T  is better 

than T ′  if )|var()|var( θθ TT ′≤ , Θ∈∀θ  (the inequality has to be strict for, at least, one 

value of θ ). 

o Example: )(~ θPoX  and let us consider  XT =  and 2ST =′  as estimators of θ . 

θθθ == )|()|( XETE   θθθθ ===′ )|var()|()|( 2
XSETE  

nnXT //)|var()|var( 2 θσθθ ===   
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• Definition (CB): An estimator T  for )(θτ  is a best unbiased estimator of )(θτ  if it satisfies 

)()|( θτθ =TE  for all θ  and, for any other estimator W  with )()|( θτθ =WE , we have 

)|var()|var( θθ WT ≤  for all θ . T  is also called a uniform minimum variance unbiased 

estimator (UMVUE) of )(θτ . 
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• Cramér-Rao Inequality applied to unbiased estimators 

Let ( )nXXX ,,, 21 �  be a random sample from a population with probability density 

function )|( θxf X  and let ),,,( 21 nXXXTT �=  be an unbiased estimator of )(θτ satisfying  

( ) ×
∂

∂
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x

xxx
D

dfTTE
d

d
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θ
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 and ∞<)|var( θT .  
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• Comments 

o The original Cramér-Rao inequality is proved for any estimator and for non-

independent sampling – see Casella and Berger, 2nd edition, page 335. 

o ( ) ×
∂

∂
=

x

xxx
D

dfTTE
d

d
)|()()|( θ

θ
θ

θ
. We can swap the derivation (in order to θ ) with 

the integration (in order to x ). The set of support of X  cannot depend on θ  (the 

uniform density function doesn’t fulfill this condition). 

o ∞<)|var( θT : The variance of T  should exist. 

o When we have an unbiased estimator of θ  we can compare its variance with the lower 

bound given by the Cramér-Rao inequality. If they are equal we have an UMVUE. If 

not, nothing can be concluded (nothing is said about the possibility that an unbiased 

estimator with a variance equal to the lower bound exists). 

o )(θℑ  is called Fisher information for each observation (as the observations are iid the 

information contained in each of them is the same). ( )n θℑ  is Fisher iformation for the 

sample. 
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• Example – Consider a Poisson population with mean θ  and show that X  in an UMVUE 

estimator for θ . 

We have already shown that X  is an unbiased estimator for θ  and that nX /)var( θ= . 

Let us now calculate the lower bound of the Cramér-Rao inequality. 
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As X  is an unbiased estimator of θ  with a variance equal to the lower bound, we can 

conclude that X  in an UMVUE estimator for θ . 
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Mean-squared error 

• How to compare estimators that are not unbiased? 

• Definition 10.4 (12.4): The mean-squared error of an estimator is  ( )( )θθθθ
θ

|ˆ)(
2

ˆ −= EMSE  

• The mean-squared error can be rewrite as  

( )( ) ( )2

ˆ

2

ˆ )()|ˆvar(|ˆ)( θθθθθθθ
θθ

biasEMSE +=−=  

• Comments 

o The mean-squared error is a function of the true value of the unknown parameter, θ : 

some estimator can perform well for some values of  θ  and poorly for other values of θ . 

o Using the MSE with an unbiased estimator of θ  is the same as using its variance. 

• Example: Let us consider a Bernoulli population with parameter θ  and two estimators for θ  

obtained using a sample of size n : XT =1  and 3.02 =T . Compare these estimators using their 

MSE.  
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Although 2T  is an inadequate estimator of θ  (the estimator does not take into account 

the collected sample) we see that )(
1

θTMSE  is less than )(
2

θTMSE  for some values of θ  

 

• It is convenient to use a qualification criterion before using the MSE and only compare 

estimator that fulfill such criterion. 
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Consistency 

• Definition 10.3 (12.3) – An estimator is consistent (often called, in this context, weakly 

consistent) if, for all 0>δ  and any θ , 0)ˆPr(lim =>−
∞→

δθθn
n

. 

• Comments: 

o A sufficient although not necessary condition for weak consistency is that 

θθθ =
∞→

)|ˆ(lim n
n

E  and 0)|ˆvar(lim =
∞→

θθn
n

. Such statement can be proved using Markov 

inequality ( aXEaX /)()Pr( ≤≥ )1. 

o Consistency is a property of the sequence of estimators, �� ,,,, 21 nXXX , and not of the 

estimator itself. 

o The idea behind consistency is that the estimator will work well for large samples. 

                                                             

1 ( ) ( )( ) ( )( ) ( ) ( )
2 2

2 2
2 2

2 2 2

ˆ ˆ( )ˆvar( )ˆ ˆ ˆPr Pr Pr
n

n n n

E Eθ θ θ θθ
θ θ δ θ θ δ θ θ δ

δ δ δ

− −
− > = − > ≤ − ≥ ≤ = +  

 



 

24 

 

• Example 10.6 (12.6) – Prove that, if the variance of a random variable is finite, the sample 

mean is a consistent estimator of the population mean. 

µ=)(XE  

nX /)var( 2σ=  

 

Then 

 

µµ ==
∞→∞→ nn

XE lim)(lim  

 

0/lim)var(lim 2 ==
∞→∞→

nX
nn

σ  

 

 

 



 

25 

 

INTERVAL ESTIMATION 

• Unlike point estimation, interval estimation leads to a set of values. 

• The idea is to associate a level of confidence to such intervals.  

• Definition 10.6 (12.6) – A ( )100 1 %α−  confidence interval for a parameter θ  is a pair of random 

values, L and U, computed from a random sample such that ( ) αθ −≥≤≤ 1Pr UL  for all θ .  

• Comments: 

o The definition does not uniquely define an interval; 

o When we replace the random variables by their observed values, nothing is said about 

whether or not the interval encloses θ ; 

o The level of confidence is a property of the process and not a property of the particular 

values obtained; 

o Note that the inequality concerns discrete random populations (more theoretical). 
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• How to construct a confidence interval? 

o Not an easy question when considering a general case 

o Usually we follow the pivotal method 

• Pivotal quantity – A random variable ),,,,( 21 θnXXXQ �  is a pivotal quantity if the 

distribution of ),,,,( 21 θnXXXQ �  does not depend on θ . 

• Comments: The function ),,,,( 21 θnXXXQ �  

o depends only on the sample ),,,( 21 nXXX � , on θ  and, possibly, on some known values; 

o is completely known; 

o usually, is monotonic in θ . 
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• Pivotal method (we will assume that ),,,,( 21 θnXXXQ �  follows a continuous distribution) 

o Step 1 – Find 1q  and 2q  such that ( ) αθ −=≤≤ 1),,,,(Pr 2211 qXXXQq n� . 

o Step 2 – From 2211 ),,,,( qXXXQq n ≤≤ θ�  define L  and U  such that 

ULqXXXQq n ≤≤⇔≤≤ θθ 2211 ),,,,( � . 

L  and U  define a confidence interval for θ . How to choose the pair 1q  and 2q ? 

 

Optimally 1q  and 2q  are chosen to minimize the length (or its expected value if such length is 

random) of the confidence interval. As this task is difficult to fulfill in most situations we can 

follow a practical approximation and choose 1q  and 2q  such that 

( ) ( ) 2/),,,,(Pr),,,,(Pr 221121 αθθ =>=< qXXXQqXXXQ nn ��   

 

• Using R to calculate confidence intervals will be discussed later 
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• Some well-known pivotal quantities: 

o For normal populations or when we have a large sample some pivotal quantities are 

well-known for usual situations;  

o For other situations we try to find and estimator θ̂  for θ  with a known distribution 

(independent of θ ). If the sample is large enough and the estimator well behaved we 

can use 
ˆ ˆ( )

~ (0;1)
ˆvar( )

E
n

θ θ

θ

− �

. Note that, as this result is asymptotic, we can use an adequate 

approximation for )ˆ(θE  and )ˆvar(θ  
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A) Gaussian (normal) populations:  

 Pivotal Quantity Confidence Interval 

Mean (known variance) 
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/
n

X
Q X X X Z N

n

µ
µ

σ

−
= =  








+−

n
zX

n
zX

σσ
αα 22 ,  

Mean (unknown variance) 
1 2 ( 1)( , ,..., , ) ~

/
n n

X
Q X X X T t

S n

µ
µ −

−
= =  








+−

n

S
tX

n

S
tX 22 , αα  

Variance 
)1(~

)1(
),,...,,( 2

2

2
2

21 −
−

= n
Sn

XXXQ n χ
σ

σ  






 −−

1

2

2

2 )1(
,

)1(

q

Sn

q

Sn
 

2/αz : 2/1)( 2/ αα −=Φ z ;   :2/αt  2/)( 2/)1( αα =>− tTP n ; 1q , 2q : 2/)()( 2)1(1)1( α=>=< −− qQPqQP nn  

 



 

30 

 

B) Large samples (Confidence interval for the mean):  

 Pivotal Quantity Confidence Interval (aprox) 

Case 1 
1 2( , ,..., , ) ~ (0,1)
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Bernoulli populations: )(~ θBerX    

Usual approach – Use 
n

XX
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)1(
)(var
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Poisson Populations: )(~ θPoX   

Usual approach – Use 
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TEST OF HYPOTHESES 

• Null, H0, and alternative, H1, hypotheses 

• The two hypotheses are not treated symmetrically (Neyman-Pearson approach). We do 

not reject H0 unless there is strong statistical evidence against it. 

• The result of a test is the rejection (or not) of the null hypothesis. What so ever the 

decision is, an error is always possible: 

o Type I error: Rejection of the null when the null is true; 

o Type II error: Not rejecting the null when the null is false. 

 

 0H  true 0H  false 

Reject 0H  Type I error  Correct 

Do not reject 0H  Correct Type II error 
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• Using a simple example it can be shown that it is not possible to minimize both errors 

(unless we increase the sample size) 

),(~ 2σµNX  with 42 =σ . The test is  10:0 =µH  against 14:1 =µH .  

a) Let us assume that our sample has only one observation and that the rejection 

region is given by  { }5.12: >= xxW . Determine the probabilities associated with type 

1 and type 2 errors. ( 1056.0≈α , 2266.01 ≈− β ). 

b) Show that decreasing the probability of a type 1 error implies increasing the 

probability of a type 2 error and vice-versa 
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• Definition 10.7 (12.7) – The significance level of a hypothesis test is the probability of making a 

Type I error given that the null is true. If it can be in more than one way, the level of significance 

is the maximum of such probabilities. The significance level is usually denoted byα . 

• Comments: 

o This definition is conservative since we are considering the worst case; 

o Typically, the worst case is on the boundaries between H0 and H1; 

o Usual values for the level of significance are 1%, 5% or 10%. 

• Using the Neyman-Pearson approach one should control the probability associated with the 

Type I error, i.e. one must control the significance level of the test, and choose the test with 

a smaller probability of a Type II error, given the significance level. 

• Comments: 

o The approach give more importance to the type I error; 

o Such a test is called a most powerful (uniformly most powerful test); 
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• Definition 10.8 (12.8) – A hypotheses test is uniformly most powerful (UMP) if no other test 

exists that has the same or lower significance level and, for a particular value within the 

alternative hypothesis, has a smaller probability of making a Type II error. 

• Test statistic –The test statistic is a function of the sample observations with a known 

distribution under the null. The design of a test procedure looks at all the samples that might 

have been observed and not at the particular sample that was observed. 

• Rejection region – The test specification is completed by defining a rejection region. If the 

observed value of the test statistic falls in the rejection region we will reject the null, 

otherwise we will not reject the null.  

• How develop a test of hypotheses? 

o Define the hypotheses H0 and H1 and  

o Choose an adequate significance level 

o Obtain a test statistic and determine the rejection region 

o Calculate the observed value of test statistic and conclude 
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Open questions: How to obtain the test statistic and, given the test statistic, how to determine 

the rejection region? 

o Theoretical results: Neyman-Pearson’s lemma and Karlin-Rubin theorem 

o Empirical rule of thumb: When testing a mean, a variance or a proportion (Bernoulli 

populations) using the “natural” test statistic the rejection region is on the side of the 

alternative. 

o In most situations a UMP test does not exist, namely when the null hypothesis is an 

equality and the alternative is both sides (“=” against “≠ ”). 

• Some useful results - Normal populations (1 sample): 
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/
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• Some useful results – Larges samples (populations with finite variance)- 1 sample: 

Test about the mean, variance unknown  )1;0(~
/

0 n
nS

X
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�µ−
=   
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Bernoulli population*     
( )

)1;0(~
/1 00

0 n
npp

pX
Z

�

−

−
=  

Poisson population     )1;0(~
/0

0 n
n

X
Z

�

µ

µ−
=  

 

* As discussed for confidence intervals the way to approximate a Bernoulli population to a 

normal is not unique. This formula is the most common solution.  
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• Examples 10.13 to 10.15 (12.13 to 12.15) – Your company has been basing its premium on 

an assumption that the average claim is 1200. You want to raise the premiums, and a 

regulator has insisted that you provide evidence that the average now exceeds 1200. To 

provide such evidence, the following have been obtained: 

   27    82   115   126   155     161     243     294      340       384 

457   680   855   877   974   1193   1340   1884   2558   15743 

a) What are the hypotheses for this problem (example 10.13)? 

b) Complete the test using the test statistic and rejection region that is promoted in 

most statistics books ( 05.0=α ). Assume that the population has a normal distribution 

with standard deviation 3435 (example 10.14). 

c) Determine the probability of making a Type II error when the alternative hypothesis is 

true with 2000=µ  (example 10.15). 
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Answers: 

a) 0 : ?H  1 : ?H  We assume a normal distribution. 

b)  

4.1424=x  292154.03435/20)12004.1424( =×−=z  

Test (N-P procedure): 05.0=α  645.1=αz  (one side test)  

Rejection region: ( ){ }645.1:,,, 2021 >= zxxxW �  or 

( ){ }20/3435645.11200:,,, 2021 ×+>= xxxxW �  

conclusion: do not reject H0 

c) 7269.0)603455.0Pr()2000|507.2463Pr()2000|Accept Pr( 0 =≤==≤== ZXH µµ  
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p-values 

• Under the “classical” (Neyman-Pearson) approach a test will produce a decision on 

whether or not to reject 0H  for a predetermined value of α . 

• Sometimes this procedure does not provide the recipient of the result with clear 

information on the strength of the evidence against 0H . 

• A more informative approach is to calculate and quote the p-value of the observed test 

statistic. This is the significance level of the test statistic, i.e. 

 The probability, assuming 0H  is true, of observing a test statistic at least as “extreme”  

(inconsistent with 0H ) as the value observed; 

 The significance level that originates a critical value equal to the observed value of 

the test statistic.  

 

If α  is greater than the p-value we reject 0H  and if α  is smaller than the significance level we 

do not reject 0H  
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• Definition 10.9 (12.9) – For a hypothesis test, the p-value is the probability that the test 

statistic takes on a value that is less in agreement with the null hypothesis than the value 

obtained from the sample. Tests conducted at a significance level that is greater than the p-

value will lead to a rejection of the null hypothesis, while tests conducted at a significance 

level that is smaller than the p-value will lead to a failure to reject the null hypothesis. 

• Comment – The definition should refer less than or equal to. This point has no practical 

influence when the test statistic follows a continuous distribution as it is generally the case.  

• Example: Resume previous example using p-value.  

Test (p-value): p-value= 3851.0)1200|Pr()Pr( ==≥=≥ µxXzZ  do not reject H0 for 

05.0=α  
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Using R 

• As a calculator namely to compute probabilities and quantiles 

• In R, confidence intervals are obtained “simulating” test of hypothesis 

• Function t.test(….) for one sample or two samples tests for the means, ideally for normal 

populations but can be used with large samples 

t.test(x, y = NULL, 
       alternative = c("two.sided", "less", "greater"), 

       mu = 0, paired = FALSE, var.equal = FALSE, 

       conf.level = 0.95, ...) 

 

• Function var.test  for the comparison of the variances of 2 independent normal population 

using  2 independent samples 

var.test(x, y, ratio = 1, 

         alternative = c("two.sided", "less", "greater"), 

         conf.level = 0.95, ...) 
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• Function prop.test() for one sample or two samples tests for the proportions (means) of 2 

Bernoulli populations – Larges samples only – should be used carefully as the options go 

beyond the usual formula presented above 

prop.test(x, n, p = NULL, 
          alternative = c("two.sided", "less", "greater"), 

          conf.level = 0.95, correct = TRUE) 

 

And, as usual, you can search for many other options using specific libraries 

 

• Example: In a survey with 1000 answers, we got 510 YES (and 490 NO) to the question: 

“are you satisfied with your motor insurance company?”. Can we conclude that more 50% 

of the insured people in the population are satisfied? 

0 : 0.5H p ≤   1 : 0.5H p >  

Usual procedure: 
(510 /1000) 0.5

0.6325
0.5 (1 0.5) /1000

obsZ
−

= =
× −

  0.2635p value− =   

Using R (next slide) 
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> n=1000; s.x=510; xb=s.x/n 

>  

> z.obs=(xb-0.5)/sqrt(0.5*0.5/1000); z.obs 

[1] 0.6324555 

> p.value=pnorm(z.obs,0,1,lower.tail=F); p.value 

[1] 0.2635446 

>  

> prop.test(510,1000,p=0.5,alternative="greater",correct=F) 

 

        1-sample proportions test without continuity 

correction 

 

data:  510 out of 1000, null probability 0.5 

X-squared = 0.4, df = 1, p-value = 0.2635 

alternative hypothesis: true p is greater than 0.5 

95 percent confidence interval: Only when alternative is 2 sided 

 0.4840059 1.0000000 

sample estimates: 

   p  

0.51  
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 More results for 2 independent samples ( )
11 2, , , nX X X�  and ( )

21 2, , , nY Y Y�  

• Normal populations: 
2~ ( , )

X X
X n µ σ ; 

2~ ( , )
Y Y

Y n µ σ ; 

o 2

X
σ   and 2

Y
σ  known → 

( ) ( )
2 2

1 2

~ (0,1)
X Y

X Y

X Y
Z N

n n

µ µ

σ σ

− − −
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o 2

X
σ   and 2

Y
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X Y
σ σ=   → 

( ) ( )
1 2
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1 2

1 2 1 2
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o 2

X
σ   and 2

Y
σ  unknown (only an approximate distribution) → 

( ) ( )1 2

2 2

1 2

~ ( )

X Y

X Y
T t r

S S

n n

µ µ− − −
=

+

      

r  being the largest integer contained in 

2
2 2

1 2

2 2
2 2

1 1 2 2

1 1

1 1

X Y

X Y

s s

n n
r

s s

n n n n

∗

 
+ 

 =
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o Ratio between 2 variances:  
2 2

1 22 2
~ ( 1, 1)X Y

Y X

S
F F n n

S

σ

σ
= − −  

 

Example 1 – To compare 2 risks we collect 2 independent samples of claims and get  

Risk A: 8.0, 8.4, 8.0, 6.4, 8.6, 7.7, 7.7, 5.6, 5.6, 6.2;  

Risk B: 5.6, 7.4, 7.3, 6.4, 7.5, 6.1, 6.6, 6.0, 5.5, 5.5;   
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> x=c(8.0, 8.4, 8.0, 6.4, 8.6, 7.7, 7.7, 5.6, 5.6, 6.2) 

> y=c(5.6, 7.4, 7.3, 6.4, 7.5, 6.1, 6.6, 6.0, 5.5, 5.5) 

>  

> var.test(x,y,1,alternative="two.sided") 

 

        F test to compare two variances 

data:  x and y  

F = 2.1433, num df = 9, denom df = 9, p-value = 0.2715 

alternative hypothesis: true ratio of variances is not equal to 1  

95 percent confidence interval: 

 0.5323637 8.6288860  

sample estimates: 

ratio of variances  

          2.143293  

 

 

 

> t.test(x,y,alternative="two.sided",0,var.equal=T) 

        Two Sample t-test 

data:  x and y  

t = 1.882, df = 18, p-value = 0.07611 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 
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 -0.09655188  1.75655188  

sample estimates: 

mean of x mean of y  

     7.22      6.39  

> t.test(x,y,alternative="two.sided",0,var.equal=T) 

        Two Sample t-test 

data:  x and y  

t = 1.882, df = 18, p-value = 0.07611 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 -0.09655188  1.75655188  

sample estimates: 

mean of x mean of y  

     7.22      6.39  
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o Correlation coefficient (Fisher transformation) → 

1 1 1 1
3 ln ln ~ (0;1)

2 1 2 1

aR
Z n n

R

ρ

ρ

  + + 
= − −    − −    

 

o Correlation coefficient: When 0ρ =  , 
2

2
~ ( 2)

1

R n
T t n

R

−
= −

−
   

cor.test(x, y, 

         alternative = c("two.sided", "less", "greater"), 

         method = c("pearson", "kendall", "spearman"), 

         exact = NULL, conf.level = 0.95, continuity = FALSE,...) 

 

The null is always 0ρ =  

Example 2 – The vice president of marketing for a large firm is concerned about the 

effectiveness o advertising in generating sales of the firm’s product. To investigate the 

relationship between advertising and sales, data were gathered from a random sample of 20 

sales districts on the two variables (file advertising.csv) in an adequate monetary unit. What 

can you conclude? 
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> direct="G:/Risk Models 2018 global/datasets/"; file="advertising.csv" 

> dta=read.csv(paste(direct,file,sep=""),header=T,sep=";") 

> attach(dta) 

> cor.test(Sales,AdvExpenditures) 

        Pearson's product-moment correlation 

data:  Sales and AdvExpenditures  

t = 10.7023, df = 18, p-value = 3.111e-09 

alternative hypothesis: true correlation is not equal to 0  

95 percent confidence interval: 

 0.8275196 0.9722002  

sample estimates: 

      cor  

0.9296189  

> cor.test(Sales,AdvExpenditures,alternative="greater") 

        Pearson's product-moment correlation 

data:  Sales and AdvExpenditures  

t = 10.7023, df = 18, p-value = 1.556e-09 

alternative hypothesis: true correlation is greater than 0  

95 percent confidence interval: 

 0.8501354 1.0000000  

sample estimates: 

      cor  

0.9296189  
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Paired samples 

What is a paired sample? 

The main idea of a paired sample is to observe (measure), each subject or entity twice, 

resulting in pairs of observations, ideally one before and one after a given event. The point is to 

relate the event with a possible difference between the populations mean. Common 

applications of the paired sample t-test include case-control studies or repeated-measures 

designs. Suppose you are interested in evaluating the effectiveness of a company training 

program. One approach you might consider would be to measure the performance of a sample 

of employees before and after completing the program, and analyze the differences using a 

paired sample t-test. 

 

Formally, the sample is now composed by independent pairs of observations. It should be 

noted that although the pairs of observations are independent of each other nothing is said 

about the independence between the elements of the same pair, X and Y since there is 

generally no independence. 

 

Usually the point is to test 0 :
X Y

H µ µ=  against a one-side or a two-tails alternative. 
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Define niNYXZ
iZYXiii ,...,2,1),;(~ 2 =−−= σµµ  , with niXYYXZi

,...,2,1,2222 =−+= σσσσ  

As 2

Z
σ   is unknown we use  0

( 1)~
/

n

Z

Z
T t

S n

µ
−

−
=  where 

0 X Y
µ µ µ= −   under the null, Z X Y= −  

and 2 2

1

1
( )

1

n

z ii
S Z Z

n =
= −

−
 . 

Example – Time needed to complete a task was measured before and after a course intended 

to improve the performance of the employees for a sample of 20 employees randomly chosen 

among those who attended the course (file time.csv). Assuming that the variables are normally 

distributed can we conclude that the course has been a success?  
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> rm(list=ls(all=TRUE)) 

> direct="G:/Risk Models 2018 global/datasets/"  

> file="time.csv" 

> dta=read.csv(paste(direct,file,sep=""),header=T,sep=";") 

> attach(dta) 

> diff=After-Before 

> t.test(diff,alternative="less") 

 

 

        One Sample t-test 

 

data:  diff  

t = -1.3087, df = 19, p-value = 0.1031 

alternative hypothesis: true mean is less than 0  

95 percent confidence interval: 

    -Inf 44.3717  

sample estimates: 

mean of x  

   -138.1  


